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1. Introduction

Improved access to foreign markets alters the innovation decisions of firms in two
ways. First, it provides firms with a larger market (or scale) that increases the returns to
innovation. Second, greater scale encourages entry, meaning greater competition, which
makes innovation less attractive for some firms (business-stealing competition) but more
attractive for other firms seeking to escape the competition through innovation. Examples
of this research include Lileeva and Trefler (2010), Bustos (2011), and Aghion et al. (2022)
on scale, Atkeson and Burstein (2010), Impulliti and Licandro (2018), and Aghion et al.
(2018) on business-stealing competition, and Aghion et al. (2001) and Aghion et al. (2005)
on escaping the competition. This paper uses firm-level Chinese data for 2000-2006 to in-
vestigate econometrically how improved access to foreign markets affects innovation via
these scale and competition channels. It does so using a new model that combines step-
by-step innovation, escape the competition, and a type of quality segmentation observed
in many markets that we now describe.

Consider the mobile phone market. The world’s three hundred mobile phone man-
ufacturers can be divided heuristically into three quality segments: a high grade (e.g.,
Apple and Huawei), a middle grade (e.g., China’s Xiaomi), and a low grade (e.g., China’s
Tecno Mobile focused on Africa). Grades are segmented both because consumers have
heterogeneous demands for quality and because today’s grade determines the set of
grades that can be reached through successful innovation tomorrow (‘step-by-step’ in-
novation). After China’s entry into the the WTO in 2001, China’s mobile phone manu-
facturers quickly dominated the global low grade before becoming major players in the
middle grade, and are now entering the high grade.

Consider Xiaomi’s innovation decision. Looking forward in quality space, if Xiaomi
innovates into the high grade it will open up new export markets (scale); however, this
will put it in direct competition with Apple. Whether Xiaomi should innovate depends
on the scale and competition forces in its middle grade relative to the high grade. Look-
ing backward in quality space, Xiaomi is also nervously tracking low-grade firms such as
Tecno Mobile who may soon innovate into the middle grade where they will compete
neck-and-neck with Xiaomi. This puts pressure on Xiaomi to innovate in order to es-
cape tomorrow’s competition. We refer to these effects of competition on innovation as
competitive cascades because competition in the high grade discourages innovation in the
middle grade, and more firms remaining in the middle grade creates competition that
discourages innovation in the low grade.

The need to simultaneously look backward and forward creates a complicated prob-
lem for Xiaomi. Yet the solution is characterized by a remarkably clear and testable set of
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Figure 1: Four Predictions: Impact of Competition and Scale on Innovation



raise the grade of their product. We use the model to derive an estimating equation that
relates firm innovation to export-market size and competition in grades that are forward
and backward in quality space relative to a firm’s existing grade. Second, we develop a
method for estimating each Chinese firm’s grade, leveraging a structural demand equa-
tion implied by our model. This is an entirely novel approach to a novel problem so we
spend time developing and validating it. Third, we use detailed data on trade, produc-
tion, and innovation outcomes for Chinese firms to estimate the effects of export-market
size and competition on innovation, focusing on R&D spending, patents, the value of
new-product sales, and the principal component of all three measures. We confirm all
four of the predictions in figure 1. Further, for the competition predictions we find that
increased competition associated with entry is much more important for innovation than
is increased competition from incumbents. Finally, we find these results to be robust to
a wide range of alternative specifications, including ones that address endogeneity con-
cerns.

Literature

Our paper contributes to several literatures. First, we add to the body of research
documenting how firm-level innovation is affected by exporting (scale). There is growing
empirical evidence that improvements in export-market access have positive effects on
firm-level innovative activity. For example, tariff cuts in export markets have been shown
to lead to greater product and process innovation (Lileeva and Trefler, 2010, for Canada),
higher spending on technology transfers and high-tech equipment (Bustos, 2011, for Ar-
gentina), and patenting (Coelli et al., 2022, for multiple countries). Maican et al. (2021)
and Peters et al. (2020) also estimate that export-market profits are a key component
of expected returns to R&D for Swedish and German firms respectively.! See Shu and
Steinwender (2019), Melitz and Redding (2021) and Akcigit and Melitz (2022) for sur-
veys. We contribute to this evidence by showing that the effect of greater export-market
size on firm innovation — both in our model and the data — depends on whether the in-
crease occurs backward or forward in quality space relative to the firm’s current quality.
Our findings also complement branches of this literature that emphasize heterogeneity in
export-market size effects with respect to other firm characteristics, for example firm size
(Akcigit and Kerr, 2018) and productivity (Aghion et al., 2022).

Second, we contribute to the empirical literature examining how firm-level innovation

There is evidence of such effects outside of the international trade context as well. For example, Ace-
moglu and Linn (2004) provide evidence that increases in potential market size lead to greater entry of new
pharmaceutical products, while Beerli et al. (2018) show that an increase in domestic market size raises
productivity for Chinese manufacturing firms.



is affected by competition. Here the evidence is much more mixed, with some studies
finding negative impacts of import competition on innovation (e.g., Autor et al., 2020,
Liu et al., 2021) and others finding positive effects (e.g., Bloom et al., 2016). Several pa-
pers have highlighted that the effects of competition on innovation may depend on firm
characteristics such as size (Zhang, 2018) and productivity (Bombardini et al., 2018, Cu-
solito et al., 2021). We add to this discussion by showing that the effects of competition
on innovation depend on where in quality space the competition occurs.

Third, we offer a new theory of what innovation actually buys a firm. Existing frame-
works mostly model innovation by incumbent firms as a means of improving production
efficiency (“process innovation”) and differ in how firm innovation decisions interact.?
Some frameworks also model innovation as a means by which firms can obtain new
products (“product innovation”), by creating these products from scratch,® stealing ex-
isting products from incumbents,* or possibly both.> Our model captures elements of
both product and process innovation, since a firm that successfully innovates not only
creates a new product of higher quality but also changes the distribution of its future pro-
ductivity shocks. However, the key difference in our model relative to the literature is
that successful innovation also changes the market in which a firm operates, which then
exposes the firm to different export-market conditions. This concept of innovation as a
means of ascending through a sequence of ordered markets is key for rationalizing the
opposite effects on innovation of competition in forward versus backward grades that we
find empirically.

In particular, if all firms operated in a single grade, stronger competition would always
discourage innovation due to standard business-stealing effects, whereas when firms can
innovate to move up the grade ladder, investing in innovation to escape from competi-
tion in backward grades becomes possible. In this sense, we also contribute to the more
specific discussion about competition associated with escape-the-competition motives for
innovation. In seminal work, Aghion et al. (2001) and Aghion et al. (2005) develop mod-
els of competition between two firms in which innovation allows one firm to increase

2These include partial equilibrium models that abstract from such cross-firm interactions (e.g., Aw et al.,
2011, Aghion et al., 2022, Maican et al., 2021, Peters et al., 2020), models with atomistic firms in which firm
innovation decisions interact only through general equilibrium price indices (e.g., Atkeson and Burstein,
2010, Costantini and Melitz, 2007, Bustos, 2011, Chen and Xu, 2022, Kdnig et al., 2021, Lentz and Mortensen,
2008), duopolistic models that study interactions between two innovating firms (e.g., Acemoglu and Ak-
cigit, 2012, Aghion et al., 2005, Aghion et al., 2001, Akcigit et al., 2021), and oligopolistic models with
symmetric firms (e.g., Impulliti and Licandro, 2018).

3As in Arkolakis et al. (2018), Atkeson and Burstein (2010), and Bloom et al. (2021).

4As in Grossman and Helpman (1991), Klette and Kortum (2004), Acemoglu et al. (2018), and Acemoglu
and Linn (2004).

5See Atkeson and Burstein (2019).



market share by improving its production capabilities relative to its competitor. How-
ever, both firms always remain in the same market, and an increase in competition is
modeled as an increase in the substitutability between firms’ products instead of growth
in the measure of firms operating in each market, as in our case. In other work, Fieler
and Harrison (2022) develop a model where firms can choose to compete in nests with
many competitors or invest to create new nests with fewer competitors, while in Bloom
et al. (2021), firms facing greater import competition can respond by reallocating trapped
factors toward innovative activities that create new products. This is similar to our mech-
anism, in the sense that innovation changes the market in which a firm operates, except
that there is no notion of orderedness in these markets, hence the concept of “forward”
and “backward” market shocks does not apply.

The outline of the paper is as follows. Section 2 presents the theoretical framework.
Section 3 reviews the data. Section 4 describes a critical step in our analysis, namely the
estimation of grades and product quality. Section 5 presents our main findings about the
impacts on innovation of changes in export-market scale and competition in forward and
backward grades. Section 6 addresses endogeneity concerns. Section 7 provides robust-
ness checks. Section 8 concludes with implications for policy, including WTO subsidies
reform.

2. Model

We consider an economy at two points in time, t — 1 and ¢. In each period, there is
a set of firms that each produce a unique product. These products are heterogeneous
in a fundamental characteristic that we refer to as the grade of the product, indexed by
g € {1,---,G} with G < 0.’ For our purposes, there are three important features of
grades. First, products that are of higher grades have higher quality, where quality is
modeled as a consumer taste shifter. Second, the domestic and export profits that a firm
earns are dependent on the grade in which the firm produces. Third, the grade of a firm
at time ¢t depends on the firm’s grade at time ¢t — 1 and the firm’s investment in innovation.

Since each firm produces a unique product at a given point in time, we can refer to the
grade of firm 7 at time ¢ without ambiguity and denote this by ¢ (i, t). Furthermore, as we
describe below, the innovation decision of firm 7 at time ¢ will depend on its lagged grade
at time ¢t — 1, which for brevity we simply denote by ¢ (?) = ¢ (i,t — 1).

5We treat G as exogenous. While microfounding this (e.g., in the spirit of Perla and Tonetti, 2014)
would provide modelling elegance, it would not add any additional insights for our empirical analysis
below. Atkin et al. (2021) adopt a similar assumption.
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2.1. Firm heterogeneity

At the end of period ¢t — 1, firms are heterogeneous in three dimensions: grade ¢(7),
total factor productivity (TFP) which we denote by Q;; ;, and export status which we
denote by d;j¢_1, where 6;_; = 1 if the firm exports and é;;_; = 0 if not. We assume that
TFP follows a first-order Markov process with the cumulative density of Q;; conditional
on Q;¢_; denoted by F (:|Qj¢_1). We assume that export status also follows a first-order
Markov process. Specifically, the probability that a firm which exported in grade ¢ at time
t — 1 exports in period t is denoted by:

P =Proie =161 =19(@) =gl @)
while the corresponding probability for a non-exporter in period ¢ — 1 in grade g is:
A = Prse =160 = 0.9 (i) = ] @

We make four observations. First, unlike Melitz (2003), exporting is not a choice vari-
able. This simplification will allow us to have incredibly rich heterogeneity across grades
(e.g., demand and the cost of innovation will vary by grade) and across firms. We will
exploit this empirically. Second, exporting depends on grade, which depends on inno-
vation. Since we will find higher exporting propensities in higher grades, the choice to
innovate leads directly to a higher probability of exporting, a feature that the firm inter-
nalizes in making its innovation decision. Third, given the innovation process described



denoted by b}, to vary by grade e.g., innovation in higher grades may be more costly.

Conditional on successfully innovating, the firm transitions forward to a grade ¢’ >
¢ (i) with exogenous probability pi™?, where S ;o pE™¢ = 1. Similarly, conditional
on unsuccessful innovation, the firm remains in or regresses to a grade ¢ < ¢ (i) with
some exogenous probability pr(i)’gE,' where Y- ) pr(i)’gD= 1. Hence, greater investment
in innovation makes it more likely that a firm will transition to a higher grade.’

The transition probabilities 2”9 and p&™9" determine industry dynamics, but we
know from multiple data sets that industry dynamics are not entirely controlled by the in-
novation choices of firms. For example, Foster et al. (2008) find that exit is often preceded
by negative demand shocks, which Griliches and Regev (1995) refer to as the “shadow



For simplicity, we assume that firms making innovation investment decisions at the
start of period ¢ fully discount outcomes beyond that period. Firm i therefore chooses
ajt > 0 to maximize the following objective function:

_bg(l)a +Mg(|) (a ) Z _g(l)g |t [l— Mg(i) (a Z —g(i), gl:l_I (4)
9==g(i) gt<g(i)

N []\/[g(i) (aie) pRO9O+L, 4 [1— M9 (ay)] P9 (1 77)} —g(i)

where 3% = p® (1 — ) + p2 ™y for ¢’ > gand pY = p¥ (1 — ) + p&¥ Ly for ¢’ < g are
the net probabllltles of advancing and regressing given the outcomes of both innovation
and obsolescence.® The corresponding first-order condition for the firm’s problem is then:

H A EL EI_
b?(') — mg(l) (a Z —g(i).9 Z —g(i).9 —g(l) Igt(l) (5)
9=g(i) gt<g(i)

where pd = nng'g+1 (1 — n) p& (o subscript for own grade) is the net probability of a firm
remaining in its own grade g conditional on the outcome of innovation.

In appendix A.2, we show formally that a model with forward-looking firms leads
to a similar first-order condition for innovation investments (see equation A.27), except
that the weights {gS,’égD,ﬁngE,'ﬁ?)} have a different interpretation: instead of only reflecting
the probabilities of transitioning from ¢ to ¢’ in a single period, these weights also reflect
the discounted probability of transitioning to ¢’ over multiple periods. Intuitively, firms
in g care about profit opportunities in ¢’ if the latter can be reached either in one period
through jumps of potentially multiple steps (as in our model) or through jumps over
multiple periods (if firms are forward-looking). Hence, in this sense, our model captures
the key implications of forward-looking behavior even without allowing for it explicitly.
We revisit this discussion in section 7.

Equation (5) is central and anticipates one of our main results. It shows that optimal
innovation for firm i depends on outcomes in three types of grades: the firm’s own grade

%To understand the expression for pg 799" note that a firm moves forward from g to g’ in one of two ways:
It successfully innovates to g’ and does not face obsolescence (with probability p?+?



g (2), forward grades ¢’ > ¢ (i), and backward grades ¢’ < ¢ (i). Given the properties of //¢ de-
scribed above, if ¢’ can be reached from ¢(i) with strictly positive probability then optimal
innovation investments are strictly increasing in %?tmfor forward grades and strictly decreasing in
%?tmfor backward grades. On the other hand, since the sign of pg is ambiguous, so too is the

effect of own-grade expected profits %?t(i) on innovation.

2.3. Profits, scale and competition

Equation (5) is a structural relationship between optimal innovation investments and
expected profits in each grade. To link innovation investments to export-market size and
competition, we must therefore take a stand on how these variables affect firm profits.
We can generally express the profits earned by a firm with TFP Q;; and export status dj; in
grade g as the sum of profits from domestic (D) and export (X) markets:

W? (Qit, 6ix) = WP'Q (Qit, dir) + 7Ttx’g (Qit, dir) - (6)

Anticipating that we do not observe export destinations for a large number of Chinese
firms in our data, we treat the export-market as a single market. In addition, we assume
that preferences for products within a grade ¢ are identical across markets and take a con-
stant elasticity of substitution form with product substitution elasticity ¢9. This implies
that domestic and export profits can be expressed respectively as:

D, _ 1 5p, 1 Qit .
9 (Qit, 6ir) = (E) R <NtD'g) (ﬁ?l,g 0
1 _ 1 0. 09-1
o9 (Qit, die) = it (E) Ry (Nx,g> (ﬁ;tg) ®)
t t

where }_2?’9 (}T{f“g) is total domestic sales (export revenues) for all firms (exporters) in
grade g, N9 (N{“9) is the number of firms (exporters) in grade ¢, and {Q?'g, Qi“g} are
measures of average TFP among firms and exporters in grade g:

_1 _1
o9—1 ocd—1

— 1 — 1
D,g g__ X,0 — 9__
Q=55 2 W N I 9)
t ie'/\/-tD,g t ieNtX,g

with {/\/tD,/\/'tx} denoting the set of firms and exporters in grade g. Note that a firm’s ex-
port status d;; does not matter for its domestic profits, whereas the firm captures positive
profits from exporting if and only if §;; = 1.



The intuition for the profit equations (7) and (8) is straightforward. With CES pref-
erences within each grade, profits for a firm in grade ¢ are a constant fraction cig of the
firm’s sales in that market. Firm sales can then be decomposed into three terms.

First, }_%tD'g and }_%f(’g capture the scale of the grade g domestic and export markets.
These terms account for: (i) total consumer expenditure in the domestic and export mar-
kets across all grades; (ii) how consumers differentiate and allocate expenditure across
grades in each market; (iii) the extent of foreign competition faced by domestic producers
in the domestic market (import competition) and in the export market; and (iv) any vari-
able trade costs associated with exporting. In our empirical application below, we will
use data on éi('g to control for export-market scale. This approach allows us to proceed
with the empirical analysis without having to first identify the underlying drivers of scale
described above.

Second, N% and N;“? capture the extensive margin of competition in the grade g domes-
tic and export markets. Absent firm heterogeneity, each firm (exporter) would capture a
constant fraction @ (ﬁ) of the domestic (export) market in grade g. Hence, ceteris
paribus, more competitors reduce the profits that an individual firm is able to capture.

Third, ﬁtD*g and ﬁi(’g capture the intensive margin of competition in the grade ¢ domestic
and export markets. Firms that are more productive than the average firm in the market
capture more than an equal share of the market, whereas firms that are less productive
than the average firm capture less than an equal share. Hence, as the productivity of the
average competitor in a market increases, sales and profits for each firm fall conditional
on the firm’s own productivity.

Taking expectations of the profit expressions (7) and (8) conditional on firm i’s lagged
TFP and export status, we then obtain:

9 = L) goe (1 L\ HY(Q 10
T = | g ) NP3 ) \ gos (Qit-1) (10)
_ 1)\ = 1 1\

T = pit (E) Ry <Ntx’g) (g—)i(g> H? (Qit-1) (11)
T =TS+ (12)

where H% (Qir1) = [ QFf “'dF (Qit|Qi+_1) is the expectation of Q! conditional on Q; ¢ ;
and pj; is firm i’s expected probability of exporting at ¢ conditional on its export status
and grade at time ¢t — 1:

pit = Gie1pr 9D + (L= Gie ) pr 00 (13)
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2.4. Innovation and export-market scale and competition

We are interested in explaining firm i’s expenditure on innovation, denoted by Yj; =
bg(



obsolescence or failed innovation without obsolescence. Mathematically, pg, = p,g:'g+l77 —
pg (1 —n) has an ambiguous sign. This is very clear in the special case of one-step innova-
tion where successful innovation moves a firm up one grade and unsuccessful innovation
leaves the firm in the same grade. Then equation (5) reduces to:

WO =m0 (i) |1 - )T+ — (@ = - O (15)

= an) [(L = A = 70+ @ - DR
Combining this with equations (10)-(12) yields the following proposition.

PROPOSITION 3. Assume that there is one-step innovation. Let ¢ = ¢ (z) be firm ¢’s grade and
suppose pir > 0. Holding constant all other innovation-relevant factors, larger scale }_%f('g, lower
extensive-margin competition N;%, and lower intensive-margin competition E)i('g (i) raise firm
i’ innovation if > 3, (ii) lower firm 4’s innovation if n < %, and (iii) have no effect on firm i’s
innovation if n = 1.

It is thus useful to have an empirical sense of ’s value. In the one-step innovation
case, the probabilities of transitioning from ¢(7) to either g(i) — 1, g(z) or g(i) + 1 sum to
one and are pinned down by 1 and the average probability of successful innovation M.
Calibrating n and M to match observed transitions in our data generates = 0.594, which
is close to 0.5.2° This motivates our baseline specification in which we include expected
export-market scale and competition regressors for grades ¢ — 1 and ¢ + 1, but not for
grade g. In section 7 we then show that when regressors for grade g are included they are
statistically and economically insignificant.

3. Data

Production data: Production and sales data (including firm-level exports) are from
the 2000-6 Chinese Manufacturing Enterprises (CME) database. We link firms across
time following Brandt et al. (2012, 2014, 2017), who have generously published their so-
phisticated programs. Not suprisingly, our firm counts are almost identical to theirs. See
online appendix E.1.1. Appendix B describes how we clean the data and choose which

OcConsider firms in grades g = 2,...,G — 1. In the data the probability of moving up for these
firms is 0.301 and occurs in the one-step model when there is successful innovation without obsolescence:

M (1 —n) = 0.301. The probability of moving down for these firms is 0.154 and occurs in the model when
innovation fails with obsolescence: (1 — M)n = 0.154. Solving for M and n yields n = 0.594.

12



observations to include in the sample. Notably, we always omit processing firms and in
robustness checks also exclude state-owned enterprises and foreign-invested firms.

Innovation data: Firms engage in innovation in a variety of formal and informal ways
that we measure using data on patents, R&D, and the value of new-product sales. Patent
data are from the China National Intellectual Property Administration (CNIPA) and are
matched to our CME database using firm names and addresses. R&D and new-product
sales are reported directly in the CME. R&D is available for 2001-3 and 2005-6. The
three innovation measures are winsorized. Appendix B contains details. Each measure
is zero for many firms. To deal with this sparsity we combine the three measures by
estimating their common principal component. This principal component of innovation
is our baseline measure of innovation, though we always report results separately for
R&D, new-product sales, and patents. The principal component is estimated by 2-digit
industry. Our sample has 28 industries. Details of estimation, including a table of factor
loadings, appear in appendix B. The loadings show that for each industry, the principal
component is positively correlated with all three innovation measures. The loadings also
show that patents carry the least weight of the three.!

TFPR and Markups: We estimate revenue total factor productivity for each firm as in
Orretal. (2019). They show that translog gross-output production functions estimated by
2-digit industry perform well on our data. We use the proxy variable approach in Acker-
berg et al. (2015), but with three modifications: the law of motion for firm-level productiv-
ity depends on export status as in the learning-by-exporting approach of De Loecker and
Warzynski (2012) and De Loecker (2013); the Olley and Pakes (1996) selection correction
method is used to correct for attrition bias; and we add lagged capital and its square as
additional (over-identified) instruments in estimation of the production functions.'? With
TFPR estimates in hand, we estimate markups using De Loecker and Warzynski (2012)
with material inputs. The distribution of our markup estimates are shown in appendix
figure A.2. The log of markups has a sensible median of 0.17, with 5th and 95th percentiles
of 0.01 and 0.36, respectively.

Quantity and price data: We use data on constant and current dollar output for 2000-3

1The patent and R&D data are known to be distorted by government incentive schemes. In this paper
we always use these data within narrow bins defined not just by industry and year, but also by quality
grade. This purges some if not most of these biases. Chen et al. (2021a) also document the presence of R&D
tax ‘notches’, but we cannot see how these would affect our within-industry-year-grade results.

2Details appear in appendix B. Appendix figure A.2 shows that our log TFPR estimates are tightly
distributed with an interquartile range of 0.13. The figure also shows that whether or not we make the three
proxy-variable modifications does not affect these distributions. Online appendix figure B.1 reports the
distributions of our estimated output elasticities for labour, capital and materials, as well as our estimates
of returns to scale. These are all sensible.

13



from the CME to recover quantities. We then recover prices as sales per unit of quantity. 13
In addition, we extrapolate quantities and prices to 2004D6 using the procedure described
in online appendix E.1.4. The appendix cross-validation test establishes that our extrapo-
lation procedure is very accurate.

4. The Assignment of Firms to Grades
4.1. Estimation Algorithm

Crucial for our paper is the notion of quality grades. This section dePnes grades by
estimating a grade assignmerfunction g(i) that maps Prm i inyear t" 1linto grade g #

{1,...,G}. We assume that consumer preferences in any market take the following CES
form across grades (for brevity in this section we suppress industry and time subscripts):
%0 L3
U= (8Q%) (16)
g=1

where % denotes the quality of grade g products, Q9 is a CES aggregate of products within
grade g with elasticity of substitution $9 (which generates the probt equations 7 and 8),
and & is the elasticity of substitution across grades. Importantly, we assume that 98 is
strictly increasing in g, which is key for identibcation of a PrmOs grade and captures the
fact that Prms must invest in innovation to improve product quality.

From equation (16), total demand faced by a brm i operating in grade gis:

119

g =A%%)" *(p) (17)

where AY is a grade-specibc general equilibrium demand shifter re3ecting demand from
both domestic and export markets and p; is the PrmOs output price!* In equation (17),
g and p; are data while %, $9 and A? are unknown parameters that we need in order to
estimate g(i).

If we knew each PrmOs grade assignment, then we could identify the sample of Prms
in grade g and use the sample to estimate %8, $9 and A9 using standard techniques e.g.,
Berry (1994). Unfortunately, we do not know the grade assignment and have therefore
developed a novel iterative approach. Let nindex iterations and let g, (i) be the estimated

13Brandt et al. (2017) use these data to build up the price indexes they (and we) use to construct TFPR.
The form of A9 is straightforward to derive given consumer CES consumer preferences, but this is
inconsequential for our analysis.
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grade assignment function at iteration n. For the purposes of the algorithm we treat
quality as a firm-specific variable. Let 6; , be a firm’s quality at iteration n.

We start with an initializing choice 6;,. In iteration n > 1, we k-means cluster the
0in—1 Into G clusters. The clustering is the grade assignment g,(¢). Graphically, we are
dividing the 6; ,_; into G intervals that cover the real line. Firms whose 6; ,_; fall into the
g™ interval are assigned to grade g.

Before moving to iteration n + 1 we need 6; ,. Inverting equation (17):

Ing; + o3 ® Inpi) — In A%® (18)

o) — 1

1
nfin = sw—1

where o2"® and A%'® are the iteration-n estimates of the product substitution elasticity
and export-market demand shifter in grade g, (7), respectively. We estimate o2 using our
markup estimates y; as follows. Letting S3 be the set of firms assigned to grade g in
iteration n, the average grade-g markup is uf = > i ss pi/ |S3|. Appealing to properties
of CES, we set o = 18 /(19 — 1).

To estimate the demand shifters AY, recall that the largest quality in grade g is the
smallest quality in grade g + 1:

maxInéi, = min In6;, . (19)
iesy iesgt!
Combined with equation (18) this implies the following relation between the demand
shifters A3*! and A$:

g+l _ g+l _
In A3 = B3 — (J;%—_ll> By + J;%—_ll In A9 (20)
where B! = MaXiess {INg + o3 Inp;} and BY™ = mMin;cgo+1 {INgi + o3 1 Inp;}. At this
point in iteration n, we know ¢; and p; for all i and ¢ and S8 for all g. That is, we
know everything except the demand shifters. It follows that equation (20) is a first-order
difference equation in the A% and these are easily solved as a linear function of A}. Since
qguality is only meaningful up to a constant, without loss of generality we normalize log
guality in grade 1 to 